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1. Introduction 

The high-performance computing (HPC) industry has relied on clustered computing (i.e., 
parallelism) of commodity processors and performance gains in central processing units (CPUs) 
that have tracked Moore’s empirical law to field faster and faster systems.  However, several 
issues are becoming pronounced that are limiting the effectiveness of this approach.  First, scalar 
processors have for the most part followed the von Neumann architecture where a CPU follows a 
fetch, execute, and store instruction path.  Mapping computationally complex algorithms to this 
sequence can have a limited effectiveness (many algorithms achieving only 10%–30% of peak 
theoretical efficiency).  Second, the “free ride” on computer performance gains in the high 
performance computing world appears to be nearing an end.  Dynamic power for a 
complementary metal oxide semiconductor (CMOS) chip is proportional to the product of load 
capacitance, the square of voltage, and switching clock frequency.  Therefore, higher clock 
speeds of CPUs lead to more and more generation of heat.  To compensate, chip manufacturers 
began shifting to more cores clocked at lower speeds (figure 1).  This technique, known as 
voltage scaling, provides a throughput increase by using parallelism with no increases in power 
requirements (1).  Parallelism is now the norm for developers who can no longer count on 
increasing capabilities and speeds of single processors (2).  These changes have led to a large 
number of solution options for those seeking high performance. 

 

 

Figure 1.  Clock frequencies of Intel processors.
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Recognizing the shifting HPC landscape, we have engaged in a research program to assess how 
advances in the computing field can be applied to U.S. Army-relevant problems.  While these 
technologies can be applied to a wide-range of physics-based codes, the primary focus is on 
battlespace applications to move HPC closer to Soldiers and field commanders.  Technologies 
associated with information sciences, network sciences, and sensor systems to support the “every 
Soldier as a sensor” concept are the major driving forces for U.S. Army Transformation that 
includes Future Combat Systems (FCS).  Computational sciences research along with computing 
power is essential to realize this transformation.  Exponential growth in computing hardware and 
associated computing power over the last three decades provided the enabling technology to 
address a wide class of U.S. Army critical applications; however, we have not been able to 
harness the computing power to support operations on the battlefield due to the large foot print 
requirements of traditional high-performance computing systems.  Current and future forces will 
rely upon network and battlefield information assimilation in complex urban environments to 
enable the Soldier to accomplish the mission.  For example, processing information for 
situational awareness or understanding dynamic behavior of mobile ad hoc networks and 
associated sensor information on the battlefield involves handling terabytes of data.  Integrating 
this data into simulations for actionable decisions to support field commanders will require 
moving HPC technology onto the battlefield.  That is, we need substantial computing capability 
and associated software on the battlefield to support FCS and similar operations with confidence. 

This research is assessing how the changing landscape in computing can be harnessed for 
maximum deployable U.S. Army benefit.  Options we are investigating include multi-core 
processors, field programmable gate arrays (FPGAs), general-purpose graphics processing units 
(GPUs), and heterogeneous cores such as the Cell processor.  These options allow for smaller 
footprint systems with tremendous speedups compared to traditional large clusters of von 
Neumann general-purpose CPUs.  Our goal is to combine the asymmetric capabilities of these 
various cores into a complete high performance computing system.  The primary focus is on 
battlespace applications to move HPC closer to the Soldier and field commander.  Doing so 
opens up new possibilities to increase the capabilities of the Soldier and the systems being used 
in many application areas (e.g., sensors and intelligence applications).  Algorithm development 
for applications needing improvements in speed and/or fidelity will be critical. 

 

2. Relevant Technologies 

With the trend of decreasing price and size of processors, it is easy to envision today’s 
supercomputer capability on a workstation in about a decade’s time.  On the other hand, 
associated software to take advantage of computing power and the communication bandwidth to 
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transfer gigabytes of data in the dynamic environment of the battlefield are not following this 
trend.  Hence, PetaFlop computing is feasible within the next decade but software may not catch 
up to take full advantage of the hardware, especially in battlefield applications.  The current best 
option to achieve a fielded and mobile HPC system is through the use of throughput architectures 
that combine disparate, asymmetric cores into a unified solution.  These systems are focused on 
raw floating-point performance (with some attention to integer-based applications as well), and 
the application program interfaces (APIs) associated with them are rapidly maturing. 

Throughput architectures come in various configurations and instantiations.  Just about all of 
them have their origins in the commercial sector where virtual world simulation found in gaming 
engines requires large FLOP rates.  At the bottom layer of execution, throughput architectures 
rely on single instruction multiple data (SIMD) parallelism.  The SIMD execution model exploits 
data-level parallelism by operating a single instruction on different data sets.  By having multiple 
SIMD capable processors on a chip, throughput architectures can execute independent SIMD 
instructions in parallel. 

Hardware multi-threading attempts to hide the effect of stalls by letting the processors do some 
other productive task.  This technique allows the general-purpose use of GPUs to be promising 
for applications with large amount of threads.  GPU processing cores are heavily multi-threaded; 
typically requiring thousands of threads per core to achieve good performance.  Two main 
factors can cause slowdown in these systems.  The first deals with branches and data 
dependencies in code.  Codes with many switch statements and conditionals, as well as temporal 
dependencies, can lead to under utilization of available computing units while waiting for results 
to be computed.  The second is far worse and deals with code that has to access “remote” 
memory.  These stalls can cost hundreds to thousands of cycles.  Creating a large number of 
threads helps to cover these stall delays by allowing the compute core to switch to a new thread 
when one stalls.  Different memories are available at different speeds, thus it is usually up to the 
application developer to pay close attention to memory access patterns to achieve good speedup.  
Compilers optimizations to do this task are slowly making progress. 

Figure 2 illustrates a simple GPU core and how threads are executed (context switching) to keep 
the core busy (3).  The core (figure 2a) can execute an instruction from one thread for each clock 
cycle but can maintain thread states for four threads.  With the ALUs acting as SIMD processors, 
each can execute a vector-type instruction in a single clock (in this case, 32 concurrent 
instructions).  Floating-point general-purpose vector registers are available and partitioned 
among the thread contexts.  At runtime, the GPU runs a copy of the executable on each of the 
four thread contexts (figure 2b).  T0 is executed until a stall is detected at cycle 20 (resulting 
from a memory reference that needs to be fetched or an instruction to complete).  A context 
switch occurs to allow T1 to continue at cycle 20.  T0 becomes ready again at cycle 70 and 
begins to execute again at cycle 80 after the stall by T3.  Notice that this schedule allows all 32 
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(a) Example GPU core. (b) Example thread execution. 

Figure 2.  Simplified GPU and thread execution. 

 
ALUs to be busy during the entire run.  Also notice conceptually the large number of threads that 
are required to be running to allow the runtime system to efficiently keep the ALUs busy through 
context switching. 

The Cell processor is an example of a chip containing heterogeneous multi-cores.  The Cell has 
one main processor called the power processing element (PPE) and eight co-processors named 
synergistic processing elements (SPEs).  Each SPE is a self-contained and independent processor 
capable of SIMD computations.  Put another way, each SPE can run a distinct program.  A 
notable difference in the Cell architecture is the absence of cache in SPEs.  Instead, 256 KB of 
local storage space is available for each SPE and data must be transferred via data memory 
access (DMA).  A common problem with these types of architectures deals with codes 
experiencing a lack of arithmetic intensity.  Applications that do not have heavy floating-point 
calculation needs will not perform well on these systems.  Another related issue is the amount of 
on-chip memory available to each core.  If data is used faster than it can be loaded, the 
processors will stall while waiting for more data transfers to complete. 

Another technology option at our disposal is reconfigurable computing.  While scalar processors 
typically follow the von Neumann architecture approach of fetch, execute, and store, 
reconfigurable computing refers to processing with the aid of programmable logic, usually in the 
form of an FPGA.  With an FPGA, data path and control flow can be modified in hardware as 
necessary to reduce an algorithm’s execution time. Instead of computing through a series of 
instructions, a series of logic gates is created to solve a problem, thus closely matching the 
algorithm to the underlying hardware (figure 3).  By coupling an FPGA with a processor, 
compute-intensive applications can be off-loaded from a host CPU to an optimized architecture 
in an FPGA.  This integration allows an FPGA to function as a powerful co-processor and 
collaborate with a main CPU for performance acceleration.  FPGAs are not really programmed 
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Figure 3.  FPGAs provide a flexible fabric for circuit design. 

 
in the traditional sense of the word.  Rather, they require a hardware description language that 
has the concepts of concurrence built in.  Due to the time-intensive development workflow 
required from hardware descriptions, several vendors are developing and refining procedural 
programming languages that down-compile to hardware implementations or descriptors like 
Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). 

Since most FPGAs are built on Static Random Access Memory (SRAM) technology, they have 
much slower clock rates than CPUs.  Accordingly, they can only compete with CPUs when 
enough fabric is available to create multiple processing elements that can be pipelined.  For 
example, assume a CPU clocked at 4 GHz compared against an FPGA at 400 MHz.  Also 
assume that the CPU takes one cycle to produce some result.  Given this scenario, the FPGA 
logic would have to be structured to allow for at least 10 “processing elements” to be created in 
order to equal the performance of the CPU. 

 

3. Technical Approach 

Our approach involved identifying relevant technology and establishing a laboratory to field, 
test, and investigate the various emerging components.  These technologies are now part of an 
Asymmetric Core Computing Laboratory that has been established.  The fielded components in 
the laboratory continue to evolve as the various technologies mature.  Dual- and quad-core Intel-
based processors are currently being used.  To better understand how reconfigurable computing 
hardware can be applied, several FPGAs have been installed as well, including the Nallatech 
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H101-PCIXM board that provides a general-purpose framework for development and testing of 
reconfigurable computing.  Two different GPUs have been installed.  These include the NVIDIA 
GeForce 8800 GTX with 128 cores and AMD’s FireStream using 320 cores.  Two Sony 
Playstation 3 systems that feature the heterogeneous Cell as the main compute engine were 
procured and configured to run a version of Linux.  The Cell has eight vector processing units 
controlled by a moderately powerful PowerPC chip.  Some of these components were combined 
into a flexible architecture in the lab that contains a dual-core processor, FPGA board, and a 
GeForce GPU to provide a combined theoretical performance of 562 GFLOPS with the three 
distinct asymmetric core resources. 

With the relevant technology identified, we moved toward addressing several computational 
kernels that would (a) help us learn more about the technology and (b) be relevant in their own 
regards to applications considered for future implementation on these resources.  These small- to 
moderate-sized kernels provided a convenient way to understand the various programming 
languages and APIs used by the technologies.  We also began working on a fielded system that 
could directly benefit from the technologies we were investigating.  Since asymmetric cores 
require a careful partitioning to map applications to the optimal cores, we also spent a fair 
amount of time profiling codes and studying the codes’ “signatures” to map the various pieces of 
the algorithm to the best architecture.  Determining this partitioning a priori is not yet automatic 
and can be time-intensive. 

As with all new technologies, several technical barriers must be addressed as these systems are 
applied to Army problems.  Some of these are long-term and will be addressed over time as the 
technology matures.  Others were more immediate as the technology was fielded to our targeted 
applications in the near term.  Common across all of the technologies is the rather immature, 
although rapidly evolving, software development environments for the hardware solutions.  
AMD’s SDK provides access to the intermediate Compute Abstraction Layer (CAL) low-level 
code generated by its compiler to allow motivated developers the option to try to do better than 
the compiler’s back end code generator.  Anecdotally this highlights that more work is often 
required for the compilers to be considered optimizing or robust.  Furthermore, many of the 
languages being offered to developers remain proprietary acting as a “black box” filter with little 
or no details on how performance is being achieved.  With FPGAs, there are noted performance 
issues with high-level language approaches. 

Hardware issues are also evident.  While the memory densities in FPGAs have increased, the use 
of floating-point units takes up a large amount of fabric space (worse for double-precision) that 
limits the number of processing elements that can be created.  This in turn limits the size of the 
pipeline (or the number of processing elements) that can form and reduces performance.  Single- 
vs. double-precision on GPUs remains an issue that developers must deal with.  Early generation 
boards only supported single precision.  Double precision is now also possible but this does 
impact the overall runtime.  For example, on the AMD FireStream 9270, single precision 
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floating-point arithmetic performance is 1.2 TFLOPS.  In contrast, double-precision speeds drop 
by a factor of 5 to 240 GFLOPS (4).  Verification and validation are software engineering 
practices that developers must remain aware of as these technologies stabilize. 

 

4. Research and Development Highlights 

4.1 Cell Processor 

One of our first attempts at using a heterogeneous system involved the Cell processor.  The Cell 
was of interest due to the coupled system of a general-purpose CPU (PowerPC) and vector 
processing units known as Synergistic Processing Elements (SPEs).  There was a record of 
researchers achieving speedup using the processor, although the results and level of performance 
were somewhat varied (5, 6).  We first worked with Open Computer Vision (OpenCV) on some 
real-time edge detection algorithms.  We also investigated the Sequoia approach from Stanford 
and the Cell Messaging Layer; both available APIs to program the Cell.  Sequoia is a portable, 
low-level language that attempts to map to superscalar and parallel machines through C-like 
extensions (7). 

However, the Cell has several issues that caused us to not pursue it more vigorously, at least in 
the near term.  There has been some distinction made between multi-threaded architectures and 
streaming architectures, the later focusing more on the explicit attention a user must pay to 
establish communication streams vice computation streams (8).  The Cell can be thought of as an 
example of a streaming processor; a DMA is used to move data from the main memory to the 
local storage space.  A stall in any SPE is extremely costly.  Effective streaming poses many 
difficulties, including finding applications that can effectively work with the no cache 
architecture and limited memory.  Furthermore, we engaged in several discussions with our 
research partner Stanford University (through the U.S. Army High Performance Computing 
Research Center [AHPCRC]) who had experimented with the Cell in several projects.  We 
learned several things from this discussion including the incredible level of effort they had to 
expend to achieve speedups using the system and the difficulty of using the Cell API.  
Furthermore, they provided more details on the difficulty of overcoming the limited memory 
available to the SPEs.  While the SPEs are efficient by having no cache and a fast access 
scratchpad memory, it makes programming very complicated (9).  Other issues, notably main 
memory access rates and a rudimentary programming paradigm have been noted when trying to 
use the system for HPC cluster computing (10).  This will certainly be revisited as necessary, 
largely based on what decisions will be made for a processor to populate a Playstation 4 (should 
one be announced). 
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4.2 FPGAs 

Reconfigurable computing refers to performing computations using Field Programmable Gate 
Arrays (FPGAs).  An FPGA is a chip that flip-flops, allowing designers to program its 
reconfigurable architecture to suit a specific problem at hand.  FPGAs attempt to combine the 
advantages of fast Application-Specific Integrated Circuits (ASICs) and general-purpose CPUs.  
CPUs compute via a series of instructions, whereas FPGAs compute via a series of connected 
logic gates.  FPGAs can be conceptualized as reconfigurable ASICs.  Reconfigurable computing 
is taking a hardware approach to performing calculations.  Traditionally, FPGA computing was 
beneficial in special applications involving high degrees of bit manipulations (encryption) or 
applications requiring field programmability (e.g., space applications).  CPUs dominate the field 
of computing, but recent trends indicate a shift toward multi-core, parallel architectures.  This 
implies that CPUs can promise increased parallelism, but not increased single-thread performance.  
Because an increase in performance is not automatic with newer hardware, software development 
becomes critically important.  Without sufficient software to leverage its full potential of the 
parallel hardware, even the most powerful hardware becomes inconsequential.  This research 
assessed programming aspects of FPGA development to allow us to determine realistic 
performance of FPGA co-processors for integer- and floating-point based applications. 

Hardware description languages, mainly VHDL and Verilog, are used for developing tailored 
hardware designs for FPGA implementation.  This method requires background knowledge in 
digital circuits involving electric signals and logic devices.  In an effort to field their technologies 
into newer and more diverse areas, FPGA vendors are trying to overcome the barriers found in 
programming their devices by using high-level language development approaches.  High-level 
languages raise the abstraction level, which in effect relieves developers from the FPGA’s low-
level details.  Unfortunately, due to a lack of standards, these languages are vendor-specific and 
hardware-dependent.  Due to time constraints and availability, we focused on only two vendor 
approaches (DIME-C and Mitrion-C).  The main trade-offs related to high-level languages are 
abstraction and access.  Conceptually, a higher abstraction level makes programming both easier 
and faster.  However, visibility or access to underlying hardware, that has potential for 
optimization, is lost.  Our overall impressions with the three approaches are shown in table 1. 

 
Table 1.  FPGA development time estimates. 

Development Stage VHDL DIME-C Mitrion-C 
Background learning High Low Medium 
Writing source code High Low Medium 
Debug and simulation Low High Medium 
Applying design changes High Low Medium 
Maintaining High Low Medium 
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Two hardware systems equipped with an FPGA co-processor were utilized in this research.  
First, local Linux machines were outfitted with Nallatech H101PCIXM boards featuring Xilinx 
Virtex-4 LX100 connected to the host via a PCI-X bus.  Second, a Cray XD1, a system provided 
by the DOD High-Performance Computing Modernization Program (HPCMP) residing at the 
Naval Research Laboratory, offers Virtex-II ProVP50 and Virtex-4 LX160 additions to the 
system. 

The algorithms studied included the integer-based Blowfish encryption hashing function and 
floating-point median calculation with a bubble sort at its core.  The hashing technique follows 
the OpenBSD password authentication where the hardware design is set to perform a brute-force 
attack.  Median calculation, derived from real-world signal processing of noisy data, evaluates 
the feasibility of floating-point operations on modern FPGA systems.  Median values are 
determined by applying the bubble sort routine (used for simplicity) to a list of numbers. 

The encryption algorithm was implemented on various platforms and languages.  Performance 
results are measured in terms of throughput (number of keys tested per second).  Details on the 
hardware used and the results achieved are available in table 2 and figure 4.  A late addition to 
this study was the use of a multi-threading GPU.  The NVIDIA GeForce 8800 GTX was used for 
this with the software being written using the Compute Unified Device Architecture (CUDA) 
language.  The ability to incorporate low-level hardware optimizations using VHDL allowed us 
to achieve best performance.  While they do allow for quicker fielded solutions, higher-level 
approaches incorporate an overhead associated with automatic translation that proved to be 
damaging to performance. 

 

Table 2.  Blowfish hardware details and performance comparison. 

 
Language 

Processing 
Hardware 

Clock 
Frequency 

(MHz) 

One Unit 
Execution Time 

(µs) 

Processing 
Units 

 
Throughput 

(keys/s) 
ANSI C Xeon 3000 54 1 18,518 
VHDL Virtex-4 LX100 

FPGA 
65 120 11 91,666 

DIME-C Virtex-4 LX100 
FPGA 

51 1850 4 2162 

Mitrion-C Virtex-2 Pro 
VP50 FPGA 

100 822 2 2433 

Virtex-4 LX160 
FPGA 

100 823 4 4860 
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Figure 4.  Blowfish throughput performance (keys/second). 

 
The very simple FPGA-based median value floating-point algorithm failed to outperform a 
general-purpose Intel processor (figure 5).  This is primarily because floating-point units require 
more resources.  For example, a 32-bit integer adder requires 32 slices whereas a 32-bit floating-
point adder requires approximately 380.  This increased hardware fabric requirement severely 
limits the number of processing elements that can be formed in the FPGA.  Since FPGAs are 
built on SRAM technology, they have much slower clock rates than CPUs.  Accordingly, they 
can only compete with CPUs when enough fabric is available to create multiple, pipelined 
processing elements or when the algorithm executes poorly on a CPU general-purpose 
architecture.  Currently, floating-point area requirements are too expensive for efficient FPGA 
implementations.   Due to time constraints, a more detailed and customized solution using 
VHDL was not attempted. 

 

 

Figure 5.  Median value (floating-point) calculation requirements (seconds) 
using various list sizes.
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FPGAs provide versatility, custom dedicated design, and low-power operation.  Adaptable 
hardware performance can be achieved for applications demanding high computational 
requirements.  Compared to ASICs, the reconfigurable characteristic of an FPGA reduces time to 
market since the fabrication process is not necessary.  As for potential impact to the U.S. Army, 
field-dependent and compute-intensive applications with rapidly changing requirements can 
benefit from utilizing FPGA technology.  One favorable area is information processing with its 
computationally challenging problem size due to large amounts of data acquired by ever 
increasing numbers of sensors.  Possible applicable areas would be in signal processing for 
combat vehicle systems (e.g., radar processing systems).  Driver-assistance applications such as 
adaptive cruise control, target recognition, collision warning, and lane warning would require 
higher processing capabilities requiring parallel signal processing.  Here, the flexibility of FPGA 
systems can support evolving algorithms resulting from changes in mission and terrain 
environment. 

4.3 GPU 

4.3.1 N-body 

Several computational kernels were implemented on GPUs.  The first was the n-body method 
used to solve Newton’s laws of motion for large numbers of interacting bodies.  These methods 
are used in many applications of interest to the DOD and U.S. Army including molecular 
dynamics (MD), particle physics, and plasma physics.  The computational requirements for these 
methods increase as the square of the number of interacting particles, i.e., O(n2) so that a system 
with 20 points takes 4 as many computations as a system with 10 points.  Traditionally these 
algorithms have used parallel processing techniques to simulate ever larger model systems, and 
they scale quite well to thousands of processors.  In many of these methods, the computational 
kernel is small but heavily utilized.  This results in a method that is ideally suited to the use of 
GPUs for acceleration. 

In this effort, two applications have been considered, namely, an astrophysical simulation and an 
open source MD code.  The first of these, the astrophysics simulation, is completely re-
implemented within a GPU framework for maximum acceleration.  The second application, 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) from Sandia National 
Laboratories, is accelerated by offloading the intensive computational kernel to the GPU while 
maintaining the original code structure.  Both of these approaches have advantages and 
disadvantages that will be discussed.  Sample output from both codes is shown in figure 6. 

Since there are many n-body algorithms consuming large numbers of cycles on DOD 
supercomputers, one immediate impact of accelerating these applications is that many hours of 
CPU time could be offloaded to GPU systems such as scientific visualization clusters that would 
normally house high-end GPUs.  This would free up the more general purpose CPUs on current 
cluster systems for other applications that are not as easily ported to GPUs.  For instance, the  
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Figure 6.  N-body simulation results on a GPU. 

 
port of the LAMMPS application to GPUs resulted in an overall speedup of about 4.5, so that 
eight GPUs could do the work of 36 CPU cores.  The astrophysics application showed even 
greater speedup of about 60 so a small system with 4 GPUs could match the performance of 
240 CPU cores.  A comparison of the CPU and GPU is shown in table 3 for different numbers of 
simulated bodies.  In the future, this will allow for the utilization of these algorithms in a small 
form factor, portable architecture that could be used on or near the battlefield. 

 
Table 3.  Astrophysics n-body simulation comparison. 

No. of Bodies CPU Kernel 
(s) 

GPU Kernel 
(s) 

1,000 0.2 0.01 
5,000 4.0 0.09 

10,000 18.8 0.32 

 

N-Body algorithms have many characteristics that make them potential candidates for 
acceleration using GPUs.  These include large numbers of independent computations, i.e., each 
atom interacts with many other atoms, high floating point operation (FLOP) counts, and fine 
granularity.  This last item is due to the fact that the interactions can be computed independently 
rather than being cumulative. In n-body simulations, the majority of time is typically spent 
computing the potential function, or computing particle interactions.  In computing the potential 
function the distance from all neighboring atoms must be computed, a task that is O(n2).  A 
commonly used potential in the MD method is the Lennard-Jones potential as described by 
equation 1.

 
 
  

 
(a) 10,000 node n-body simulation (b) Sample MD model simulated using LAMMPS 
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where V(r) is the potential energy, ε is the potential well depth, σ is the distance at which the 
potential is 0, and r is the distance between atoms.  For improved performance, a cutoff distance 
is used, outside of which the particle interactions are effectively 0.  An efficient force 
computation therefore requires a neighbor list that stores the particles within the cutoff distance 
of each other. 

One interesting implementation tradeoff for LAMMPS on the GPU is that although the 
interactions for atom pairs is symmetric, so that dV(ri,j)/dr = -dV(rj,i)/dr, it is faster to recalculate 
the force acting on rj,i.  This is because the access to main memory in order to copy the results 
requires many more cycles to complete than the actual computation.  Taking this into 
consideration, we note that the GPU is performing about 2 the number of floating point 
operations that the CPU does and is still achieving a 4.5 overall speedup.  Another performance 
issue is the transfer rate of data from main memory to the GPU.  This occurs over the PCI-
Express bus with the GeForce 8800 GTX video card having a transfer rate of about 86 GB/s.  
This factor must be taken into consideration when large datasets must be transferred to the GPU 
for computation.  If the amount of computation does not offset the data transfer time, it will not 
be efficient to use GPUs. 

By using GPUs it has been possible to improve the performance of an optimized molecular 
dynamics application by a factor of 4.5 all the way to a factor of 60.  As we can see from the 
acceleration results, the improved performance of an application can approach the theoretical 
speed-up based on peak FLOP rates if one is inclined to completely rework an application into 
the GPU framework.  This is labor intensive and primarily feasible for relatively small code 
bases, unless a significant investment is warranted.  On the other hand, accelerating a specific 
portion of an application is relatively easy to do so long as the computational load far outweighs 
the communication requirements (and the computations are floating-point based).  GPUs present 
researchers with a unique piece of hardware for developing floating-point intensive applications, 
and GPUs are fairly low cost components because of the massive gaming industry that requires 
ever better graphics and performance, driving down the cost of off-the-shelf hardware. 

4.3.2 Monte Carlo 

Another interesting kernel that appears in many codes requiring a global optimum solution is the 
Monte Carlo method.  We chose to investigate this algorithm through a computational stereo 
matching process to produce a very fine, globally optimized disparity map where every pixel in 
one image is matched with its corresponding pixel in the stereo pair.  This method is also quite 
tolerant of slight variations in the image pair and can deal well with occlusion (areas not capable 
of being perfected matched due to obstructions in the image pair).  Just as with other Monte 
Carlo algorithms, this approach requires a significant number of floating-point operations.  
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However, the process of matching pixels typically requires only local interactions.  On a digital 
computer memory, this translates into local memory references since the images can be mapped 
to contiguous memory blocks.  Furthermore, the amount of processing for each pixel remains 
uniform.  All of these factors lead to an approach that is promising for effective GPU 
implementation. 

Computational stereo matching describes the process of synthesizing the mechanics of binocular 
vision.  Stereo camera pairs are aligned along the y and z axes and slightly offset in the x axis 
(horizontal).  Because of binocular parallax, these cameras (referred to as the left and right 
camera pair) will acquire slightly different images of the scene due to the horizontal shift.  A 
point P in the three-dimensional (3-D) scene is projected onto the left and right camera 
photosensitive plates at PL and PR, respectively.  The disparity is the difference in the locations 
of PL and PR that results from the camera shift in the x axis.  This disparity, along with details of 
the camera optics system, can be used to determine P’s position in the world.  For example, a 
point very distant from the cameras will appear to be at the same vertical and horizontal position 
on monitors attached to the left and right camera pairs.  However, a point close to the camera 
pair will not be in the same position on the monitors.  Rather, the point on the left monitor will 
be displaced (the disparity) to the right from the corresponding point on the right monitor. 

Once the matching points are found in an image, an inverse perspective transform or simple 
triangulation can be used to derive the two lines where the projection of the world point strikes 
the photosensitive plate of the camera.  When these lines are intersected, the 3-D characteristics 
of the scene can be recovered.  The ability to properly match stereo camera pair images is 
important to any application in which distance or range information must be extracted from an 
image.  One such application is plotting terrain contours from images shot by aerial camera pairs.  
Computer vision, biometrics, and robotics are also fields where this technique is important.  The 
system is also passive; it does not require active sensing devices that could be problematic for the 
mission requirements.  This technique also provides a way to perform image registration.  Image 
registration attempts to match images taken at different times and can provide details on changes 
that might have occurred. 

This process requires a global optimization.  Since the digital image data maps pixel intensities 
to a relatively low resolution, there are many possible matches in the local sense.  That is, 
swatches of one image may appear to map other portions of the stereo pair.  To perform stereo 
ranging, the whole image must be taken into account.  Simulated annealing provides an 
optimization technique to locate a global optimum.  Annealing involves heating a solid and 
letting the molecules rearrange themselves.  The temperature is then slowly lowered allowing the 
molecules to settle into a low energy state (thermal equilibrium).  This algorithm mimics this 
process using a Monte Carlo search.  A disparity map is maintained for the image pair and is 
randomized at the start in the range [0..maximum disparity].  Random, local state transitions in 
the map are performed by varying the disparity value only slightly.  If the change in energy 
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(defined by a brightness and smoothness constraint) results in a lower energy level, it is 
accepted.  If the delta energy is higher, the change is only accepted with a probability within the 
Boltzman distribution.  The brightness constraint enforces the rule that matched pixels should 
have similar intensity (e.g., gray scale or color) values.  The smoothness constraint asserts that 
the horizontal shift of an element should be roughly equal to that of its neighbors.  This is 
necessary since the first constraint is strictly local and stereo correspondences are local 
ambiguous.  Without this constraint, surfaces would not be spatially coherent (10). 

An algorithm to perform the simulated annealing routine was developed and implemented on the 
GeForce 8800 GTX GPU using CUDA.  Several test cases were validated on the GPU, including 
computer-generated random dot stereograms and an actual stereo pair as shown in figure 7.  The 
results were impressive.  Even with interactive visualization of the disparity map as it was 
forming, causing extensive PCI-Express bus traffic, the 8800 GTX code ran ~25 faster than a C 
version of the code running on an Intel Xeon 3.00 GHz processor.  This algorithm also provided 
valuable lessons on memory management within the GPU and a better understanding of the 
maturity of the CUDA compiler. 

 

 
Left Image Right Image Disparity Map 

Figure 7.  A left and right stereo camera pair and resulting disparity map showing areas near camera (lighter) and 
areas distant (darker). 

 

4.3.3 Obstacle Detection and Avoidance 

To support the U.S. Army vision for increased mobility, survivability, and lethality, the Sensors 
and Electron Devices Directorate (SEDD) at the U.S. Army Research Laboratory (ARL) has 
designed and developed the forward-looking ultra-wideband (UWB) synthetic aperture radar 
(SAR) (test platform shown in figure 8).  The radar is based on time-domain wideband impulses 
and uses a data acquisition technique called Synchronous Impulse REconstruction (SIRE) that 
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Figure 8.  Prototype UWB SAR with synchronous 
impulse reconstruction (SIRE). 

 
allows it to employ relatively slow analog to digital converters (ADCs) to digitize wideband 
signals.  The configuration assumes that the radar and targets are stationary during the data 
acquisition cycle when, in reality, target signatures suffer distortions in phase and shape because 
of the radar motion.  The phase error leads to significant loss in target radar cross-sectional 
values in resulting imagery and the shape errors destroy the frequency contents of the targets and 
thus the ability to discriminate targets from other objects.  These errors are mitigated by a signal-
processing method developed to recover the accuracy of the target signatures affected by radar 
motion.  This approach was applied to simulated data and measured data from the SIRE radar.  
The result was perfect reconstruction using the simulated data and significant improvement in 
the resulting SAR image for the measured data (11). 

The computational requirements for this processing are significant.  Including data acquisition 
rates and integration using forward motion, along with parameters such as platform speed and 
sub-image size, the operation count quickly exceeds 20 million operations per second.  These 
operations are distributed over several signal and image processing filters such as forward 
motion processing and backprojection image formation.  The mathematics is predominately 
floating-point with additions, multiplications, divisions, and square roots.  The high FLOP rate 
requirements made this an ideal candidate as we considered using asymmetric core computing 
techniques to increase computational performance for battlespace applications.  Our goal was to 
use these technologies to speed the processing to achieve near or at real time speeds. 

Due to the high floating-point requirements of this code, we decided to target the NVIDIA GTX 
8800 GPU hardware and the associated CUDA API components in our Asymmetric Core 
Computing Laboratory for speedup.  The 8800 GTX has 128 cores clocked at 1.35 GHz with a 
FLOP rate of about 345 GFLOPs.  CUDA provides a “C”-like programming interface where 
kernels are written to run on the device (GPU) and are callable from the host (CPU).
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Our starting point was an initial code written in Matlab.  Matlab is widely used in the Signal and 
Image Processing (SIP) community and is best at providing a wide-range of functionality with an 
easy-to-use scripting language.  However, execution speed is not one of its strong points.  This 
code was deconstructed and re-implemented in the C computer language.  This effort took a fair 
amount of work as several routines, such as the not-a-knot spline used in Matlab for curve fitting, 
had to be reconstructed in C.  The code expansion factor (as determined from source lines of 
code) was about 3.75 since many Matlab calls required several lines of C code to produce the 
same functionality.  A profile of the Matlab code and the C code showed roughly the same code 
characteristics.  Over a small set of test frame data, about 60% of the total execution time in 
Matlab was spent performing the backprojection module (76% of total in C).  The majority of the 
time is spent computing 3-D distance calculations.  Given the fact that so much time is spent in 
the routine and the high rate of floating point instructions per branch taken, we chose to 
concentrate on this module for GPU implementation. 

The 8800 GTX uses a fast context switching design for threads executing on the 128 compute 
cores.  Accordingly, it is best to use a fine-grain approach to parallelism as one maps an 
algorithm to the device.  Accordingly, one pixel of each 100  250 frame is assigned to a thread.  
If a thread stalls waiting for a computation to complete (such as a division operation requiring 
several clock cycles), the runtime system will context switch to a new thread so the core can 
continue to work.  Device compilers are not yet mature, but during the execution of this project 
NVIDIA published a profiler to assist developers in finding clues to source code transformations 
that might help in reducing runtimes.  Several CUDA source code optimization techniques were 
used to minimize branch divergence and maximum coalesced memory calls and on-chip memory 
use. 

The CPU used (for Matlab and C) in these tests consisted of a dual-core Intel Xeon processor 
clocked at 3.0 GHz.  The charts in figure 9 show the achieved performance for the overall SIRE 
code (a) and the backprojection module alone (b) of processing 32 m.  Overall, the SIRE radar 
processing code using GPU acceleration is running at ~31 faster than the baseline code.  The 
backprojection routine alone is computing at two orders of magnitude faster (~110).  The 
radar’s data acquisition is performed with the platform moving at an average speed of about 
1 m/s.  The Matlab code was only performing at rates around 0.11 m/s or about 10 slower than 
real time processing.  With the accelerated code, the current physical parameters are easily 
exceeded with a potential of about 3.5 m/s processing. 

Further code speedup may be possible.  The initial conversion was done in a sequential, control-
flow approach where the C code follows a flow chart amiable to real time processing.  This 
approach can limit GPU performance due to data transfers over the PCI-Express bus (frame data 
is moved from the CPU to the GPU for each call to the backprojection routine).  It may be 
possible to restructure the C code if the system is to run in post-processing mode only.  This 
could be done by loading more than one frame at a time on the GPU for parallelism across the 
frames and pixels rather than waiting for one frame to complete at a time.
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(a) Total SIRE execution time. (b) Backprojection module execution time. 

Figure 9.  Wall clock times (in seconds) of the SIRE code using different languages and cores. 

 

5. Emerging Directions 

Software engineering research is vital to achieve the potential speedups provided by an 
asymmetric core computer.  There are several concerns that will need to be addressed.  New 
approaches will be required for algorithm design and analysis; traditional models might not 
always work.  For example, on GPUs an O(n) work algorithm may actually require a longer run 
time than an O(n log n) approach.  Redundant calculations are, in many cases, preferable to 
memory operations.  The tradeoff in program development time and efficiency also needs to be 
better understood.  Furthermore, historic optimization approaches as applied to superscalar von 
Neumann architectures, such as loop unrolling, may not always be beneficial.  As long as some 
compiler, implementation, and runtime details remain hidden from developers, more work will 
have to be done to discover those transforms that might lead to an increase in performance.  The 
field is currently wide-open and challenging.  An integrated approach using computer science, 
computer engineering, and electrical engineering is required to deal with these new technologies 
in order to achieve an optimal solution. 

Recently, many vendors are signing on to the Open Computing Language (OpenCL) effort (12).  
This standard is open and is designed to allow efficient use of heterogeneous computing 
resources.  OpenCL has a software stack consisting of a platform layer, a runtime system for 
resource management, and a compiler.  The platform layer allows a query and select system to 
allow algorithms to select the optimal computing device available (based on load and the 
application’s signature).  It also supports both the data-parallel and task-parallel paradigms for 
parallel computing.  Hence, it is applicable to conceivably all parallel tasks. 

Another interesting development in GPUs is the use of superscalar processing cores.  This is 
another level of parallelism that has been added to the AMD FireStream cores.  The raw floating-
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point capacity of the 800 cores in the AMD FireStream 9270 is immense but not easily achieved.  
Maximum performance is often only achieved after careful code analysis and the targeted use of 
clever algorithms, tricks, and optimizations. 

As we progress in this research, we will be looking at using more asymmetric cores (such as a 
combined FPGA, GPU, and CPU approach) in algorithms or parallelizing across numerous 
asymmetric cores.  This will involve detailed algorithm analysis and selection of cores based on 
code signatures.  The difficulties here are predominately load balancing, selection of either task 
or data parallelism, and a way to synchronize and perform data transfers.  A simplified example 
of this is the Folding at Home project at Stanford where individuals can offer their idle 
processors (whether it is Windows PCs, Linux workstations, Playstation 3s, etc.) to a largely data 
parallel application.  These issues will need to be addressed as various streaming and multi-
threaded architectures find their way to fielded units such as the Company Operations and 
Intelligence Cells (COICs).  To be fully effective, this will involve some research on work 
distribution and load balancing among the components. 

Several questions will have to be addressed as we consider a runtime query system for load 
distribution and balance.  How would resources characterize their capabilities and report them to 
the runtime system?  How would task parallelism be represented as compared to data 
parallelism?  How would network topologies connecting the various cores be represented?  The 
general distributed data processing (DDP) problem will be studied as there are several tools and 
techniques that might be applicable.  Different applications will probably be needed at the 
various layers.  For example, data movement might be implemented by integrating numerous 
hosts using an approach such as the message-passing interface (MPI). 

 

6. Conclusion 

There is a fundamental change occurring in the HPC field as throughput architectures gain in 
importance, market share, and raw floating-point computational capacity.  Portable and even 
hand-held HPC is quickly becoming a reality, and a concerted effort is needed to make these 
technologies viable to Army forces.  We have been able to show a considerable amount of 
speedup in many applications and kernels.  Unfortunately, the performance gains achieved are at 
times proportional to the amount of effort put into the task.  New approaches are holding out 
some promise of moving these technologies more into the open source arena, thus allowing 
researchers more direct understanding and control at low levels.  These efforts should greatly 
facilitate the maturation of compiler and API technologies.  The performance of these new 
hardware approaches is providing a way to field HPC and we look forward to continued research 
and development efforts to transition these new technologies to Army applications.
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